Fiche d'exercices Thème : Fonctions polynômes, racines

MPSI 3 - 2004/2005 Chapitre: 15

Tous les exercices se placent sur $\mathbb C$ ou sur un sous-corps de $\mathbb C$. On identifie donc tout polynôme formel avec la fonction poynomiale qui lui est associée.

1. *La conjugaison est-elle polynomiale?

Existe-t-il un polynôme $P \in \mathbb{C}[X]$ tel que $P(z) = \bar{z}$ pour tout $z \in \mathbb{C}$?

2. *Injectivité, surjectivité.

- (a) Déterminer les polynômes complexes qui sont injectifs.
- (b) Déterminer les polynômes complexes qui sont surjectifs. En déduire les polynômes bijectifs.
- (c) Quels sont les polynômes $P \in \mathbb{C}[X]$ tels que $z \longmapsto P(z)$ soit périodique?

3. **Polynômes stabilisant le cercle unité.

On note $U = \{z \in \mathbb{C}, |z| = 1\}$ le cercle unité du plan complexe et $E = \{P \in \mathbb{C}[X], P(U) \subset U\}$ l'ensemble des polynômes qui stabilisent U.

- (a) Soit $P = \sum_{k=0}^{n} a_k X^k \in \mathbb{C}[X]$ avec $a_n \neq 0$. On pose $\widehat{P} = \sum_{k=0}^{n} \overline{a_{n-k}} X^k$. Montrer que pour $z \in U$, $\widehat{P}(z) = z^n \overline{P(z)}$.
- (b) Si $P \in E$, que vaut $P\widehat{P}$? Déterminer l'ensemble E.

4. *Racine dans \mathbb{Z} .

Soit $P \in \mathbb{Z}[X]$ tel que P(0) et P(1) soient impairs. Montrer que P n'a pas de racine dans \mathbb{Z} .

5. *Racines rationnelles.

- (a) Soit $P(X) = a_n X^n + \dots + a_1 X + a_0 \in \mathbb{Z}[X]$ et $r = \frac{p}{q}$ (avec pgcd (p, q) = 1) une racine rationnelle non nulle de P. Montrer que $p|a_0$ et que $q|a_n$.
- (b) Application : trouver les racines rationnelles puis la factorisation dans $\mathbb{Q}[X]$ du polynôme $P(X) = 2X^5 5X^4 21X^3 15X^2 23X 10$.

6. **Racines non réelles distinctes.

Soit $P \in \mathbb{R}[X]$ ayant toutes ses racines réelles et simples. Soit a > 0. Montrer que $P^2 + a^2$ a toutes ses racines complexes et deux à deux distinctes.

7. **Racine double.

Soient P et Q deux polynômes complexes non nuls et premiers entre eux. Soit $\alpha \in \mathbb{C}$ une racine double de $P^2 + Q^2$. Montrer que α est racine de $P'^2 + Q'^2$.

8. **Existence d'une racine réelle strictement positive.

Soient $a_0, a_1, ..., a_n$ $(n \ge 1)$ des réels positifs ou nuls, et $P = a_n X^n + \cdots + a_k X^k - a_{k-1} X^{k-1} - \cdots - a_0$, $(1 \le k \le n)$. On suppose $a_n > 0$ et $a_0 + \cdots + a_{k-1} > 0$. Montrer que P possède une unique racine réelle strictement positive. On peut procéder par récurrence sur n ou étudier une fonction judicieusement choisie.

9.	*Application	$d\mathbf{u}$	théorème	de	Rolle.	Ce résult	at es	t très	important.

- (a) Montrer que si $P \in \mathbb{R}[X]$ est scindé, alors il en est de même de P'.
- (b) Même question en remplaçant scindé par scindé à racines simples.
- (c) Montrer par exemple que $P = [(X^2 1)^n]^{(n)}$ est scindé à racines simples, toutes dans l'intervalle ouvert]-1,1[.

10. **Un théorème d'Euler.

Soit $n \ge 1$, et $P = a_0 + \cdots + a_n X^n \in \mathbb{R}[X]$ de degré n supposé scindé à racines simples sur \mathbb{R} .

- (a) Montrer que pour tout $k \in [0, n-1]$, $P^{(k)}$ est scindé à racines simples sur \mathbb{R} .
- (b) En étudiant la fonction $x \mapsto \frac{P'(x)}{P(x)}$ montrer que pour tout $x \in \mathbb{R}$, $P(x)P''(x) < P'^2(x)$.
- (c) En utilisant les polynômes $P^{(k-1)}P^{(k+1)} [P^{(k)}]^2$ montrer que pour tout $k \in [1, n-1]$ on a $a_{k-1}a_{k+1} < a_k^2$. En déduire en particulier, que P ne peut avoir deux coefficients consécutifs nuls.
- 11. ****Polynôme scindé sur \mathbb{R} . Soit $\lambda > 0$ et $P \in \mathbb{R}[X]$ de degré $n \ge 1$ scindé sur \mathbb{R} . Montrer qu'il en est de même du polynôme $Q = \lambda P + XP'$.

12. **Condition pour qu'un polynôme réel soit scindé.

Soit $P \in \mathbb{R}[X]$ unitaire et de degré $n \ge 1$. Montrer que P est scindé sur \mathbb{R} si et seulement si $|P(z)| \ge |\operatorname{Im} z|^n$ pour tout $z \in \mathbb{C}$.

13. *Nombre de racines distinctes.

Montrer que le nombre de racines distinctes de $P \in \mathbb{C}[X]$ vaut deg P – deg D où D = pgcd (P, P'). Ce résultat est très important : voici par exemples deux oraux récents de l'X qui l'utilisent...

14. ***Cardinal de l'image réciproque d'un ensemble fini.

Soit $P \in \mathbb{C}[X]$ non constant et E un sous-ensemble fini de \mathbb{C} .

Montrer que
$$|P^{-1}(E)| \ge (|E| - 1) \deg P + 1.$$
 (Oral X)

15. ***Nombre de racines d'une équation polynomiale.

Soit $P \in \mathbb{C}[X]$ de degré $d \geqslant 1$. On note n(z) le nombre de racines de l'équation P(x) = z. Donner une expression de $\sum_{z \in \mathbb{C}} (d - n(z))$.

16. **Factorisation d'un polynôme.

- (a) Factoriser dans $\mathbb{C}[X]$ le polynôme $P = (X+i)^n (X-i)^n$.
- (b) En déduire une expression simple de $\prod_{k=1}^{m} \left(4 + \cot^2 \frac{k\pi}{2m+1} \right)$.

17. Une factorisation dans $\mathbb{R}[X]$.

Soit $n \in \mathbb{N}^*$. Factoriser en irréductibles dans $\mathbb{R}[X]$ le polynôme $P = X^{2n} + 1$.

18. **Racines d'un polynôme de degré 3	18.	**Racines	d'un	polynôme	de	degré	3.
--	-----	-----------	------	----------	----	-------	----

Soit $a = \frac{1 - i\sqrt{7}}{2}$ et $P(X) = X^3 + aX^2 - \overline{a}X - 1$. Montrer que P(X) divise $P(X^2)$. En déduire les racines de P.

19. **Sommes de deux carrés de l'anneau $\mathbb{R}[X]$.

Soit $P \in \mathbb{R}[X]$ non nul et unitaire. Montrer qu'il y a équivalence entre les propositions suivantes :

- (i) pour tout réel $x, P(x) \ge 0$.
- (ii) toute racine réelle de P est de multiplicité paire.
- (iii) il existe $(A, B) \in \mathbb{R}[X]^2$ tel que $P = A^2 + B^2$.
- (iv) il existe $C \in \mathbb{C}[X]$ tel que $P = C\bar{C}$.

20. ***Equation fonctionnelle (1).

Trouver les $P \in \mathbb{R}[X]$ tels que P(X) = P(1 - X). (Oral X)

21. ***Equation fonctionnelle (2).

Trouver les polynômes P de $\mathbb{R}[X]$ tels que $P(X^2) = P(X)P(X+1)$.

22. **Equation fonctionnelle (3).

Quels sont les polynômes $P \in \mathbb{C}[X]$ tels que $P(X^2) = (X^2 + 1)P(X)$? (Oral Mines)

23. **Une extention algébrique de degré 3.

Soit $P(X) = X^3 - X^2 - 2X + 1$.

- (a) Montrer que les trois racines de P sont réelles.
- (b) Montrer que les racines de P ne sont pas dans \mathbb{Q} .
- (c) Soit θ une racine de P. On pose $\mathbb{Q}[\theta] = \{a + b\theta + c\theta^2, (a, b, c) \in \mathbb{Q}^3\}$. Montrer que $\mathbb{Q}[\theta]$ est un \mathbb{Q} -espace vectoriel. Quelle est sa dimension?
- (d) Montrer que $\mathbb{Q}[\theta]$ est un corps. (Oral X)

24. **Un nombre algébrique.

Trouver un polynôme à coefficients entiers ayant $\alpha = \sqrt[3]{2} + \sqrt[3]{4}$ pour racine. (Oral Centrale)

25. ***Séparabilité.

(Oral Centrale)

Soit $P \in \mathbb{Q}[X]$ un polynôme irréductible. Montrer que les racines complexes de Q sont toutes simples.

26. Pour touts les ages... Discussion entre deux mathématiciens :

- -"Tu dois trouver l'âge de mon fils sachant qu'il est racine d'un polynôme à coefficients entiers P?
- -Je crois qu'il a 7 ans.
- -Ah non, P(7) = 77. Il est plus agé.
- -Dans ce cas il a le même âge que mon chien.
- -Ah non, si y est l'âge de ton chien, P(y) = 85. Il est encore plus agé.
- -C'est bon, avec toutes ces informations j'ai trouvé".

Et vous ? Quel est l'âge du fils ? Et celui du chien ?